Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 3): 119022, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685304

RESUMO

Groundwater from different aquifers in the Zhanjiang area suffers from different degrees of nitrogen pollution, which poses a serious threat to the health of urban and rural residents as well as the surrounding aquatic ecological environment. However, neither the water chemistry and microbial community characteristics in different aquifer media nor the sources of inorganic nitrogen pollution have been extensively studied. This study integrated water quality parameters, dual isotopes (δ15N-NO3- and δ18O-NO3-), and 16S rRNA data to clarify the hydrochemical and microbial characteristics of loose rock pore water (LRPW), layered bedrock fissure water (LBFW), and volcanic rock pore fissure water (VRPFW) in the Zhanjiang area and to determine inorganic nitrogen pollution and sources. The results show that the hydrochemistry of groundwater in different aquifers is complex and diverse, which is mainly affected by rock weathering and atmospheric precipitation, and the cation exchange is strong. High NO3- concentration reduces the richness of the microbial community (VRPFW). There are a large number of bacteria related to nitrogen (N) cycle in groundwater and nitrification dominated the N transformation. A quarter of the samples exceeded the relevant inorganic nitrogen index limits specified in the drinking water standard for China. The NO3- content is highest in VRPFW and the NH4+ content is highest in shallow loose rock pore water (SLRPW). In general, NO3-/Cl-, dual isotope (δ15N-NO3- and δ18O-NO3-) data and MixSIAR quantitative results indicate manure and sewage (M&S) and soil organic nitrogen (SON) are the main sources of NO3-. In LRPW, as the depth increases, the contribution rate of M&S gradually decreases, and the contribution rate of SON gradually increases. The results of uncertainty analysis show that the UI90 values of SON and M&S are higher. This study provides a scientific basis for local relevant departments to address inorganic nitrogen pollution in groundwater.

2.
PLoS One ; 18(5): e0284633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167349

RESUMO

The use of microbially induced calcium carbonate precipitation (MICP) technology can improve the mechanical properties of silty clay, and glutinous rice paste can enhance microbial activity, improve the conversion rate of CaCO3 precipitation, and help increase soil strength. An MICP solidification test of silty clay was carried out by adding different concentrations of aged glutinous rice slurry and cementing liquid, and unconfined compressive strength tests and scanning electron microscope analysis of the solidified samples were carried out. The strength growth mechanism of the glutinous rice paste was investigated, and the results revealed that glutinous rice slurry can improve the enzymatic activity of microorganisms, that is, the microorganisms can produce more urease to decompose urea, and as the amount of urease increases, the concentration of the cementing solution increases, and the calcium carbonate generated by the MICP precipitates. When the concentration of the added cooked glutinous rice slurry was 5%, the unconfined compressive strength of the soil was the largest. In addition, the scanning electron microscope analysis revealed that cooled glutinous rice slurry can be used as a bridge to generate a large amount of ineffective carbonic acid. Calcium atoms are connected together to form effective calcium carbonate, which fills in the pores of the soil as a whole, increasing the compactness of the soil and greatly improving its macroscopic mechanical strength.


Assuntos
Carbonato de Cálcio , Oryza , Argila , Urease , Solo
3.
Drug Deliv Transl Res ; 13(5): 1195-1211, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35816231

RESUMO

Polymeric micelles are increasingly explored for tumor-targeted drug delivery. CriPec® technology enables the generation of core-crosslinked polymeric micelles (CCPMs) based on thermosensitive (mPEG-b-pHPMAmLacn) block copolymers, with high drug loading capacity, tailorable size, and controlled drug release kinetics. In this study, we decorated clinical-stage CCPM with the αvß3 integrin-targeted cyclic arginine-glycine-aspartic acid (cRGD) peptide, which is one of the most well-known active targeting ligands evaluated preclinically and clinically. Using a panel of cell lines with different expression levels of the αvß3 integrin receptor and exploring both static and dynamic incubation conditions, we studied the benefit of decorating CCPM with different densities of cRGD. We show that incubation time and temperature, as well as the expression levels of αvß3 integrin by target cells, positively influence cRGD-CCPM uptake, as demonstated by immunofluorescence staining and fluorescence microscopy. We demonstrate that even very low decoration densities (i.e., 1 mol % cRGD) result in increased engagement and uptake by target cells as compared to peptide-free control CCPM, and that high cRGD decoration densities do not result in a proportional increase in internalization. In this context, it should be kept in mind that a more extensive presence of targeting ligands on the surface of nanomedicines may affect their pharmacokinetic and biodistribution profile. Thus, we suggest a relatively low cRGD decoration density as most suitable for in vivo application.


Assuntos
Integrina beta3 , Micelas , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Polímeros , Linhagem Celular Tumoral , Peptídeos Cíclicos
4.
Biomacromolecules ; 24(10): 4385-4396, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36044412

RESUMO

Polymeric micelles (PMs) are promising platforms for enhanced tissue targeting of entrapped therapeutic agents. Strategies to circumvent premature release of entrapped drugs include cross-linking of the micellar core as well as covalent attachment of the drug cargo. The chemistry employed to obtain cross-linked micelles needs to be mild to also allow entrapment of fragile molecules, such as certain peptides, proteins, oligonucleotides, and fluorescent dyes. Native chemical ligation (NCL) is a mild bio-orthogonal reaction between a N-terminal cysteine residue and a thioester that proceeds under physiological conditions. Here, we designed a trifunctional cross-linker containing two cysteine residues for the micelle core-cross-linking reaction and an azide residue for ring-strained alkyne conjugation of fluorescent dyes. We applied this approach to thermosensitive methoxypolyethylene glycol-b-N-(2-hydroxypropyl)methacrylamide-lactate (mPEG-b-HPMAmLacn) based block copolymers of a core-cross-linked polymeric micelle (CCPM) system by attaching thioester residues (using ethyl thioglycolate-succinic anhydride, ETSA) for NCL cross-linking with the trifunctional cross-linker under physiological conditions. By use of mild copper-free click chemistry, we coupled fluorescent dyes, Sulfo.Cy5 and BODIPY, to the core via the azide residue present on the cross-linker by triazole ring formation. In addition, we employed a recently developed cycloheptyne strain promoted click reagent (TMTHSI, CliCr) in comparison to the frequently employed cyclooctyne derivative (DBCO), both achieving successful dye entrapment. The size of the resulting CCPMs could be tuned between 50 and 100 nm by varying the molecular weight of the thermosensitive block and ETSA content. In vitro cell experiments showed successful internalization of the dye entrapped CCPMs, which did not affect cell viability up to a polymer concentration of 2 mg/mL in PC3 cells. These fluorescent dye entrapped CCPMs can be applied in diagnostic imaging and the chemistry developed in this study serves as a steppingstone toward covalently entrapped fragile drug compounds with tunable release in CCPMs.


Assuntos
Corantes Fluorescentes , Micelas , Corantes Fluorescentes/química , Azidas , Cisteína , Polímeros/química , Polietilenoglicóis/química
6.
Adv Drug Deliv Rev ; 191: 114613, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343757

RESUMO

Nanomedicines are used to improve the efficacy and safety of pharmacotherapeutic interventions. Unraveling the biological behavior of nanomedicines, including their biodistribution and target site accumulation, is essential to establish design criteria that contribute to superior performance. CriPec® technology is based on amphiphilic methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide lactate] (mPEG-b-pHPMAmLacn) block copolymers, which are designed to upon self-assembly covalently entrap active pharmaceutical ingredients (API) in core-crosslinked polymeric micelles (CCPM). Key features of CCPM are a prolonged circulation time, high concentrations at pathological sites, and low levels of accumulation in the majority of healthy tissues. Proprietary hydrolysable linkers allow for tunable and sustained release of entrapped API, including hydrophobic and hydrophilic small molecules, as well as peptides and oligonucleotides. Preclinical imaging experiments provided valuable information on their tumor and tissue accumulation and distribution, as well as on uptake by cancer, healthy and immune cells. The frontrunner formulation CPC634, which refers to 65 nm-sized CCPM entrapping the chemotherapeutic drug docetaxel, showed excellent pharmacokinetic properties, safety, tumor accumulation and antitumor efficacy in multiple animal models. In the clinic, CPC634 also demonstrated favorable pharmacokinetics, good tolerability, signs of efficacy, and enhanced localization in tumor tissue as compared to conventional docetaxel. PET imaging of radiolabeled CPC634 showed quantifiable accumulation in âˆ¼50 % of tumors and metastases in advanced-stage cancer patients, and demonstrated potential for use in a theranostic setting even when applied at a companion diagnostic dose. Altogether, the preclinical and clinical results obtained to date demonstrate that mPEG-b-pHPMAmLacn CCPM based on CriPec® technology are a potent, tunable, broadly applicable and well-tolerable platform for targeted drug delivery and improved anticancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Animais , Micelas , Docetaxel/farmacocinética , Distribuição Tecidual , Portadores de Fármacos/química , Polietilenoglicóis/química , Polímeros/química , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico
7.
Adv Mater ; 34(21): e2201043, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35427430

RESUMO

Several FDA/EMA-approved nanomedicines have demonstrated improved pharmacokinetics and toxicity profiles compared to their conventional chemotherapeutic counterparts. The next step to increase therapeutic efficacy depends on tumor accumulation, which can be highly heterogeneous. A clinical tool for patient stratification is urgently awaited. Therefore, a docetaxel-entrapping polymeric nanoparticle (89 Zr-CPC634) is radiolabeled, and positron emission tomography/computed tomography (PET/CT) imaging is performed in seven patients with solid tumors with two different doses of CPC634: an on-treatment (containing 60 mg m-2 docetaxel) and a diagnostic (1-2 mg docetaxel) dose (NCT03712423). Pharmacokinetic half-life for 89 Zr-CPC634 is mean 97.0 ± 14.4 h on-treatment, and 62.4 ± 12.9 h for the diagnostic dose (p = 0.003). At these doses accumulation is observed in 46% and 41% of tumor lesions with a median accumulation in positive lesions 96 h post-injection of 4.94 and 4.45%IA kg-1 (p = 0.91), respectively. In conclusion, PET/CT imaging with a diagnostic dose of 89 Zr-CPC634 accurately reflects on-treatment tumor accumulation and thus opens the possibility for patient stratification in cancer nanomedicine with polymeric nanoparticles.


Assuntos
Nanopartículas , Neoplasias , Docetaxel/uso terapêutico , Humanos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polímeros/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Zircônio
8.
ChemSusChem ; 15(13): e202200192, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35233939

RESUMO

An efficient catalytic system for the conversion of 5-hydroxymethylfurfural (HMF) into N-containing compounds over low-cost non-noble-metal catalysts is preferable, but it is challenging to reach high conversion and selectivity under mild conditions. Herein, an Al2 O3 -supported carbon-doped Ni catalyst was obtained via the direct pyrolysis-reduction of a mixture of Ni3 (BTC)2 ⋅ 12H2 O and Al2 O3 , generating stable Ni0 species due to the presence of carbon residue. A high yield of 96 % was observed in the reductive amination of HMF into 5-hydroxymethyl furfurylamine (HMFA) with ammonia and hydrogen at ambient temperature. The catalyst was recyclable and could be applied to the ambient-temperature synthesis of HMF-based secondary/tertiary amines and other biomass-derived amines from the carbonyl compounds. The significant performance was attributable to the synergistic effect of Ni0 species and acidic property of the support Al2 O3 , which promoted the selective ammonolysis of the imine intermediate while inhibiting the potential side reaction of over-hydrogenation.


Assuntos
Carbono , Níquel , Aminação , Aminas/química , Carbono/química , Furaldeído/análogos & derivados , Níquel/química , Temperatura
9.
J Control Release ; 337: 285-295, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274386

RESUMO

The restrictive nature of the blood-brain barrier (BBB) prevents efficient treatment of many brain diseases. Focused ultrasound in combination with microbubbles has shown to safely and transiently increase BBB permeability. Here, the potential of Acoustic Cluster Therapy (ACT®), a microbubble platform specifically engineered for theranostic purposes, to increase the permeability of the BBB and improve accumulation of IRDye® 800CW-PEG and core-crosslinked polymeric micelles (CCPM) in the murine brain, was studied. Contrast enhanced magnetic resonance imaging (MRI) showed increased BBB permeability in all animals after ACT®. Near infrared fluorescence (NIRF) images of excised brains 1 h post ACT® revealed an increased accumulation of the IRDye® 800CW-PEG (5.2-fold) and CCPM (3.7-fold) in ACT®-treated brains compared to control brains, which was retained up to 24 h post ACT®. Confocal laser scanning microscopy (CLSM) showed improved extravasation and penetration of CCPM into the brain parenchyma after ACT®. Histological examination of brain sections showed no treatment related tissue damage. This study demonstrated that ACT® increases the permeability of the BBB and enhances accumulation of macromolecules and clinically relevant nanoparticles to the brain, taking a principal step in enabling improved treatment of various brain diseases.


Assuntos
Encéfalo , Micelas , Acústica , Animais , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Camundongos , Microbolhas
10.
Biotechnol J ; 16(6): e2000212, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33484630

RESUMO

BACKGROUND: CriPec technology enables the generation of drug-entrapped biodegradable core-crosslinked polymeric micelles (CCPM) with high drug loading capacity, tailorable size, and drug release kinetics. Docetaxel (DTX)-entrapped CCPM, also referred to as CPC634, have demonstrated favorable pharmacokinetics, tolerability, and enhanced tumor uptake in patients. Clinical efficacy evaluation is ongoing. CPC634 is currently stored (shelf life > 5 years) and shipped as a frozen aqueous dispersion at temperatures below -60°C, in order to prevent premature release of DTX and hydrolysis of the core-crosslinks. Consequently, like other aqueous nanomedicine formulations, CPC634 relies on cold chain supply, which is unfavorable for commercialization. Lyophilization can help to bypass this issue. METHODS AND RESULTS: Freeze-drying methodology for CCPM was developed by employing CPC634 as a model formulation, and sucrose and trehalose as cryoprotectants. We studied the residual moisture content and reconstitution behavior of the CPC634 freeze-dried cake, as well as the size, polydispersity index, morphology, drug retention, and release kinetics of reconstituted CPC634. Subsequently, the freeze-drying methodology was validated in an industrial setting, yielding a CPC634 freeze-dried cake with a moisture content of less than 0.1 wt%. It was found that trehalose-cryoprotected CPC634 could be rapidly reconstituted in less than 5 min at room temperature. Critical quality attributes such as size, morphology, drug retention, and release kinetics of trehalose-cryoprotected freeze-dried CPC634 upon reconstitution were identical to those of non-freeze-dried CPC634. CONCLUSION: Our findings provide proof-of-concept for the lyophilization of drug-containing CCPM and our methodology is readily translatable to large-scale manufacturing for future commercialization.


Assuntos
Micelas , Refrigeração , Liofilização , Humanos , Polímeros , Sacarose
11.
J Control Release ; 328: 805-816, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33010332

RESUMO

Core-crosslinked polymeric micelles (CCPM) based on PEG-b-pHPMA-lactate are clinically evaluated for the treatment of cancer. We macroscopically and microscopically investigated the biodistribution and target site accumulation of CCPM. To this end, fluorophore-labeled CCPM were intravenously injected in mice bearing 4T1 triple-negative breast cancer (TNBC) tumors, and their localization at the whole-body, tissue and cellular level was analyzed using multimodal and multiscale optical imaging. At the organism level, we performed non-invasive 3D micro-computed tomography-fluorescence tomography (µCT-FLT) and 2D fluorescence reflectance imaging (FRI). At the tissue and cellular level, we performed extensive immunohistochemistry, focusing primarily on cancer, endothelial and phagocytic immune cells. The CCPM achieved highly efficient tumor targeting in the 4T1 TNBC mouse model (18.6 %ID/g), with values twice as high as those in liver and spleen (9.1 and 8.9 %ID/g, respectively). Microscopic analysis of tissue slices revealed that at 48 h post injection, 67% of intratumoral CCPM were localized extracellularly. Phenotypic analyses on the remaining 33% of intracellularly accumulated CCPM showed that predominantly F4/80+ phagocytes had taken up the nanocarrier formulation. Similar uptake patterns were observed for liver and spleen. The propensity of CCPM to primarily accumulate in the extracellular space in tumors suggests that the anticancer efficacy of the formulation mainly results from sustained release of the chemotherapeutic payload in the tumor microenvironment. In addition, their high uptake by phagocytic immune cells encourages potential use for immunomodulatory anticancer therapy. Altogether, the beneficial biodistribution, efficient tumor targeting and prominent engagement of PEG-b-pHPMA-lactate-based CCPM with key cell populations underline the clinical versatility of this clinical-stage nanocarrier formulation.


Assuntos
Micelas , Polímeros , Animais , Linhagem Celular Tumoral , Camundongos , Imagem Óptica , Distribuição Tecidual , Microtomografia por Raio-X
12.
Small ; 16(18): e1907574, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250017

RESUMO

The current understanding of nanoparticle-protein interactions indicates that they rapidly adsorb proteins upon introduction into a living organism. The formed protein corona determines thereafter identity and fate of nanoparticles in the body. The present study evaluates the protein affinity of three core-crosslinked polymeric nanoparticles with long circulation times, differing in the hydrophilic polymer material forming the particle surface, namely poly(N-2-hydroxypropylmethacrylamide) (pHPMA), polysarcosine (pSar), and poly(ethylene glycol) (PEG). This includes the nanotherapeutic CPC634, which is currently in clinical phase II evaluation. To investigate possible protein corona formation, the nanoparticles are incubated in human blood plasma and separated by asymmetrical flow field-flow fractionation (AF4). Notably, light scattering shows no detectable differences in particle size or polydispersity upon incubation with plasma for all nanoparticles, while in gel electrophoresis, minor amounts of proteins can be detected in the particle fraction. Label-free quantitative proteomics is additionally applied to analyze and quantify the composition of the proteins. It proves that some proteins are enriched, but their concentration is significantly less than one protein per particle. Thus, most of the nanoparticles are not associated with any proteins. Therefore, this work underlines that polymeric nanoparticles can be synthesized, for which a protein corona formation does not take place.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Peptídeos , Polietilenoglicóis , Sarcosina/análogos & derivados
13.
Int J Pharm ; 514(1): 112-120, 2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27863654

RESUMO

Covalent entrapment of drug molecules within core-crosslinked polymeric micelles (CCPM) represents an attractive approach to improve their therapeutic index. As an alternative to the most commonly employed intravenous (i.v.) route, subcutaneous (s.c.) administration offers the possibility of self-administration and thereby may reduce healthcare costs. The aim of this work was to assess the pharmacokinetic profile and systemic availability of drug-containing CCPM following s.c. injection. We here derivatised dexamethasone (DMS) with three different linkers, which enabled covalent attachment of this drug to the core of CCPM. The obtained DMS-containing CCPM exhibited varying drug release kinetics in vitro. Remarkably, a single dose of DMS-containing CCPM resulted in high systemic availability of about 30% following s.c. injection into the flank of healthy mice, as evidenced by an AUC between 26-37% relative to the AUC attained following i.v. injection. Although different linkers resulted in moderate variations in pharmacokinetic parameters, the overall pharmacokinetic profiles of these i.v. or s.c. administered nanomedicines were not substantially different. Next to DMS, we covalently attached paclitaxel (PTX) to the core of CCPM. Similarly, a single s.c. dose of PTX-containing CCPM resulted in high systemic availability of about 40% compared to i.v. injection and PTX (entrapped plus released) was detected in the blood for at least 3days. Importantly, the systemic availability of s.c. administered drug-containing CCPM is substantially higher than that of other nanoformulations as reported in the literature (e.g. 3% in rodents). These results demonstrate that s.c. administration is a promising route to attain high systemic availability of CCPM, enabling a potentially more patient-friendly and cost-effective treatment approach than the i.v. route.


Assuntos
Dexametasona/química , Dexametasona/farmacocinética , Paclitaxel/química , Paclitaxel/farmacocinética , Polímeros/química , Administração Cutânea , Animais , Área Sob a Curva , Química Farmacêutica/métodos , Dexametasona/administração & dosagem , Portadores de Fármacos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micelas , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Autoadministração , Distribuição Tecidual/efeitos dos fármacos
14.
J Control Release ; 244(Pt B): 314-325, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27401327

RESUMO

To optimally exploit the potential of (tumor-) targeted nanomedicines, platform technologies are needed in which physicochemical and pharmaceutical properties can be tailored according to specific medical needs and applications. We here systematically customized the properties of core-crosslinked polymeric micelles (CCPM). The micelles were based on mPEG-b-pHPMAmLacn (i.e. methoxy poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl) methacrylamide-lactate]), similar to the block copolymer composition employed in CriPec® docetaxel, which is currently in phase I clinical trials. The CCPM platform was tailored with regard to size (30 to 100nm), nanocarrier degradation (1month to 1year) and drug release kinetics (10 to 90% in 1week). This was achieved by modulating the molecular weight of the block copolymer, the type and density of the crosslinking agent, and the hydrolytic sensitivity of the drug linkage, respectively. The high flexibility of CCPM facilitates the development of nanomedicinal products for specific therapeutic applications.


Assuntos
Portadores de Fármacos/química , Micelas , Polímeros/química , Acrilamidas/química , Reagentes de Ligações Cruzadas/química , Docetaxel , Doxorrubicina/química , Liberação Controlada de Fármacos , Peso Molecular , Taxoides/química
15.
Biomaterials ; 53: 370-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25890735

RESUMO

Treatment with chemotherapy such as docetaxel (DTX) is associated with significant toxicity and tumour recurrence. In this study, we developed DTX-entrapped core-cross-linked polymeric micelles (DTX-CCL-PMs, 66 nm size) by covalently conjugating DTX to CCL-PMs via a hydrolysable ester bond. The covalent conjugation allowed for sustained release of DTX under physiological conditions in vitro. In vivo, DTX-CCL-PMs demonstrated superior therapeutic efficacy in mice bearing MDA-MB-231 tumour xenografts as compared to the marketed formulation of DTX (Taxotere(®)). Strikingly, a single intravenous injection of DTX-CCL-PMs enabled complete regression of both small (∼150 mm(3)) and established (∼550 mm(3)) tumours, leading to 100% survival of the animals. These remarkable antitumour effects of DTX-CCL-PMs are attributed to its enhanced tumour accumulation and anti-stromal activity. Furthermore, DTX-CCL-PMs exhibited superior tolerability in healthy rats as compared to Taxotere. These preclinical data strongly support clinical translation of this novel nanomedicinal product for the treatment of cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Micelas , Taxoides/uso terapêutico , Animais , Linhagem Celular Tumoral , Docetaxel , Feminino , Humanos , Camundongos , Ratos , Ratos Sprague-Dawley
16.
J Control Release ; 205: 98-108, 2015 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-25583642

RESUMO

Therapeutic peptides are highly attractive drugs for the treatment of various diseases. However, their poor pharmacokinetics due to rapid renal elimination limits their clinical applications. In this study, a model hormone peptide, leuprolide, was covalently linked to core-cross-linked polymeric micelles (CCL-PMs) via two different hydrolysable ester linkages, thereby yielding a nanoparticulate system with tuneable drug release kinetics. The ester linkage that provided the slowest peptide release kinetics was selected for in vivo evaluation. Compared to the soluble peptide, the leuprolide-entrapped CCL-PMs showed a prolonged circulation half-life (14.4h) following a single intravenous injection in healthy rats and the released leuprolide was detected in blood for 3days. In addition, the area under the plasma concentration-time curve (AUC) value was >100-fold higher for leuprolide-entrapped CCL-PMs than for soluble leuprolide. Importantly, the released peptide remained biologically active as demonstrated by increased and long-lasting plasma testosterone levels. This study shows that covalent linkage of peptides to CCL-PMs via hydrolytically sensitive ester bonds is a promising approach to achieving sustained systemic levels of peptides after intravenous administration.


Assuntos
Reagentes de Ligações Cruzadas/química , Portadores de Fármacos , Leuprolida/administração & dosagem , Polímeros/química , Animais , Área Sob a Curva , Química Farmacêutica , Preparações de Ação Retardada , Ésteres/química , Meia-Vida , Hidrólise , Injeções Intravenosas , Leuprolida/sangue , Leuprolida/química , Leuprolida/farmacocinética , Masculino , Taxa de Depuração Metabólica , Micelas , Ratos Sprague-Dawley , Solubilidade , Tecnologia Farmacêutica/métodos , Testosterona/sangue
17.
J Am Soc Mass Spectrom ; 20(8): 1397-404, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19299166

RESUMO

A method is described to improve resolution and peak shape in the Orbitrap under certain experimental conditions. In these experiments, an asymmetric anharmonic axial potential was first produced in the Orbitrap by detuning the voltage on the compensator electrode, which results in broad and multiply split mass spectral peaks. An AC waveform applied to the outer electrode, 180 degrees out of phase with ion axial motion and resonant with the frequency of ion axial motion, caused ions of a given m/z to be de-excited to the equator (z = 0) and then immediately re-excited. This process, termed "rephasing," leaves the ion packet with a narrower axial spatial extent and frequency distribution. For example, when the Orbitrap axial potential is thus anharmonically de-tuned, a resolution of 124,000 to 171,000 is obtained, a 2- to 3-fold improvement over the resolution of 40,000 to 60,000 without rephasing, at 10 ng/microL reserpine concentration. Such a rephasing capability may ultimately prove useful in implementing tandem mass spectrometry (MS/MS) in the Orbitrap, bringing the Orbitrap's high mass accuracy and resolution to bear on both the precursor and product ions in the same MS/MS scan and making available the collision energy regime of the Orbitrap, approximately 1500 eV.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
J Am Soc Mass Spectrom ; 18(6): 980-3, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17382556

RESUMO

The mass resolution achieved in selective ion isolation using resonance excitation is usually limited by the frequency resolution of the ac waveform and by unintended off-resonance excitation. A new method of phase-enhanced selective ion ejection based on broadband dipolar excitation and ion ejection applicable to the Orbitrap is described and shown to allow an isolation resolution of 28,400. The method is calculated to be able to provide a mass resolution for ion ejection of up to 100,000.

19.
Rapid Commun Mass Spectrom ; 20(22): 3403-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17051609

RESUMO

Desorption electrospray ionization (DESI) is implemented on an Orbitrap mass spectrometer. The ion source is described and applications which utilize the high-resolution capabilities of the Orbitrap are emphasized, including the characterization of peptides and active ingredients in pharmaceutical tablets. Measurements are made in less than 1 s at a resolution of 60,000. The implications of the data for the mechanisms of DESI are discussed.


Assuntos
Peptídeos/química , Preparações Farmacêuticas/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Bradicinina/química , Loratadina/química , Comprimidos
20.
J Phys Chem A ; 110(8): 2682-9, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16494379

RESUMO

A dipolar ac signal applied to the split outer electrode of an Orbitrap mass spectrometer at the axial resonance frequency causes excitation of ion axial motion and either eventual ion ejection from the trap, if applied in phase with ion motion, or de-excitation, if applied 180 degrees out of phase. Both de-excitation and excitation may be achieved mass-selectively. The extent of ion axial de-excitation depends on the ac amplitude and on the number of cycles applied; sufficient de-excitation can be accomplished such that the ion signal cannot be observed above baseline noise. After de-excitation, the ions remain trapped and in rapid orbital (but not axial) motion, which allows them to be re-excited coherently by application of a second ac waveform allowing the signal again to be observed. Both broad-band and narrow-band waveforms have been used to de-excite and to re-excite ion motion. Using narrow-band waveforms, selective de-excitation and re-excitation can be performed with unit mass selection, leaving an adjacent 13C isotopic peak unaffected. The origin and potential applications of these new capabilities is delineated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...